Questões sobre Algebra das Proposições

Pesquise questões de concurso nos filtros abaixo

Listagem de Questões sobre Algebra das Proposições

Considere as seguintes proposições como verdadeiras:

p: a economia melhora

q: a taxa de desemprego diminui

Se p implica q, então pode-se afirmar que

Considere verdadeiras as seguintes proposições:

I . Todo aluno do curso de matemática sabe derivar ou integrar.

II . Marcos é aluno do curso de matemática.

III . Sérgio sabe derivar e integrar.

IV . Luiz não sabe derivar nem integrar.

É possível concluir que:

A partir das proposições simples P: “Sandra foi passear no centro comercial Bom Preço”, Q: “As lojas do centro comercial Bom Preço estavam realizando liquidação” e R: “Sandra comprou roupas nas lojas do Bom Preço” é possível formar a proposição composta S: “Se Sandra foi passear no centro comercial Bom Preço e se as lojas desse centro estavam realizando liquidação, então Sandra comprou roupas nas lojas do Bom Preço ou Sandra foi passear no centro comercial Bom Preço”. Considerando todas as possibilidades de as proposições P, Q e R serem verdadeiras (V) ou falsas (F), é possível construir a tabela-verdade da proposição S, que está iniciada na tabela mostrada a seguir.

Completando a tabela, se necessário, assinale a opção que mostra, na ordem em que aparecem, os valores lógicos na coluna correspondente à proposição S, de cima para baixo.

O salão principal do tribunal está preparado para um evento comemorativo e diversas pessoas foram convidadas a comparecer. Na porta do salão está um funcionário que recebeu instruções sobre as pessoas que podem entrar e uma delas foi:

“Se tiver carteira de advogado pode entrar.”

É correto concluir que:

Davi, João, Pedro, Artur e Gabriel são amigos, possuem idades diferentes e vão fazer uma fila em ordem crescente das idades.

Sabe-se que: 

Davi é mais jovem que Gabriel e que Pedro, mas não é o mais jovem de todos. 

Gabriel é mais velho que Pedro, mas não é o mais velho de todos. 

 Artur é mais jovem que Pedro.

É correto concluir que:

Navegue em mais matérias e assuntos

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis