Questões de Estatística do ano 2018

Pesquise questões de concurso nos filtros abaixo

Listagem de Questões de Estatística do ano 2018

Dois grupos independentes (G1 e G2) são formados por trabalhadores de uma cidade. G1 é composto por uma amostra aleatória, com reposição, de 100 empregados da empresa E1 e G2 por uma amostra aleatória, com reposição, de 60 empregados de uma outra empresa E2. Deseja-se testar a hipótese, utilizando a distribuição qui-quadrado, se as medianas dos salários dos empregados de G1 e G2 são iguais ao nível de significância de 5%. Foram formuladas então as hipóteses H0: As medianas de G1 e G2 são iguais (hipótese nula) e H1: As medianas de G1 e G2 são diferentes (hipótese alternativa).

A tabela abaixo apresenta o resultado de um levantamento realizado com relação à mediana (Md) dos salários do grupo combinado (das duas amostras juntas).


A conclusão do teste é que H0

Nos registros dos últimos anos, verifica-se que o número médio de pessoas atendidas em uma repartição pública por dia é igual a 20. Deseja-se testar a hipótese de que o número médio de pessoas atendidas por dia (μ) em outra repartição independente da primeira é o mesmo que o verificado na primeira repartição utilizando o teste t de Student. Foram formuladas então as seguintes hipóteses: H0: μ = 20 (hipótese nula) e H1: μ ≠ 20 (hipótese alternativa). Com base em 16 dias escolhidos aleatoriamente na segunda repartição obteve-se uma média igual a 22 pessoas atendidas por dia com um desvio padrão igual a 5. Se, tanto para a primeira repartição como para a segunda, a distribuição da população formada pelo número de pessoas atendidas é normalmente distribuída e de tamanho infinito, obtém-se que o valor da estatística t calculado para comparação com o t tabelado da distribuição t de Student com os respectivos graus de liberdade apresenta valor de

Em virtude de não se conhecer a função de densidade de uma variável aleatória X, com média 22, obteve-se um intervalo de confiança (20, 24), sabendo-se que existe a probabilidade mínima de 84% de X pertencer a este intervalo conforme o Teorema de Tchebichev. Considerando este mesmo teorema, obtém-se que a probabilidade de X não pertencer ao intervalo (22 − K, 22 + K) é no máximo 6,25%. A amplitude deste último intervalo é de

Sabe-se que 64 pessoas escolhidas ao acaso foram consultadas sobre qual o refrigerante de sua preferência entre duas marcas X e Y. Foi registrado por um sinal “+” os que preferem X e por um sinal “−” os que preferem Y. Verificou-se que o número de sinais “+” superou o número de sinais “−” em 26. Decidiu-se aplicar o teste dos sinais para averiguar se a proporção da população de sinal “mais” (p) é igual a 50% a um nível de significância de 5%. Foram então formuladas as hipóteses H0: p = 50% (hipótese nula) e H1: p ≠ 50% (hipótese alternativa). Com aproximação da distribuição binomial pela normal e desconsiderando a correção de continuidade, foi apurado para a tomada da decisão o valor do escore reduzido k para comparação com o valor crítico da curva normal padrão (Z) tal que P(|Z| ≤ 1,96) = 95%. O valor de k é tal que

O intervalo de tempo entre a morte de uma vítima até que ela seja encontrada (y em horas) denomina-se intervalo post mortem. Um grupo de pesquisadores mostrou que esse tempo se relaciona com a concentração molar de potássio encontrada na vítima (x, em mmol/dm3). Esses pesquisadores consideraram um modelo de regressão linear simples na forma y = ax + b + ε, em que a representa o coeficiente angular, b denomina-se intercepto, e ε denota um erro aleatório que segue distribuição normal com média zero e desvio padrão igual a 4.

As estimativas dos coeficientes a e b, obtidas pelo método dos mínimos quadrados ordinários foram, respectivamente, iguais a 2,5 e 10. O tamanho da amostra para a obtenção desses resultados foi n = 101. A média amostral e o desvio padrão amostral da variável x foram, respectivamente, iguais a 9 mmol/dm3 e 1,6 mmol/dm3 e o desvio padrão da variável y foi igual a 5 horas.

A respeito dessa situação hipotética, julgue os itens a seguir.

De acordo com o modelo ajustado, caso a concentração molar de potássio encontrada em uma vítima seja igual a 2 mmol/dm3, o valor predito correspondente do intervalo post mortem será igual a 15 horas.

Navegue em mais matérias e assuntos

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis