As métricas de avaliação de desempenho de um modelo de a

As métricas de avaliação de desempenho de um modelo de aprendizado de máquina, que é um componente integrante de qualquer projeto de ciência de dados, destinam-se a estimar a precisão da generalização de um modelo sobre os dados futuros (não vistos ou fora da amostra). Dentre as métricas mais conhecidas, estão a matriz de confusão, precisão, recall, pontuação, especificidade e a curva de características operacionais do receptor (ROC).
Acerca das características específicas dessas métricas, julgue o próximo item. 

A matriz de confusão a seguir apresenta três rótulos de classe; os elementos diagonais representam o número de pontos para os quais o rótulo previsto é igual ao rotulo verdadeiro, enquanto qualquer coisa fora da diagonal teve um rótulo atribuído erroneamente pelo classificador. Quanto menores forem os valores diagonais da matriz de confusão, melhor o modelo adotado. 

Imagem associada para resolução da questão

Navegue em mais questões

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Estude Grátis